Relationship between alcohol addiction and the incidence of cardiovascular disease in 9-year observation of Polish HAPIEE cohort.

Magdalena Kozela, Agnieszka Doryńska, Andrzej Pająk

Chair of Epidemiology and Population Studies, Institute of Public Health, Jagiellonian University Medical College, Krakow, Poland

Background: Drinking three or more alcoholic beverages per day is associated with elevated cardiovascular disease (CVD) risk. Results from epidemiological studies suggest a lower risk of CVD occurring with moderate alcohol consumption compared with non-drinkers. However, even little amount of alcohol consumed regularly can cause addiction.

Purpose: To assess the relationship between the alcohol addiction and the incidence of CVD in Polish sample.

Methods: Cohort study with 9-year-follow-up was conducted. Random sample of 10,728 permanent residents of Krakow at age 45-69 completed baseline examination. Out of them 10,012 agreed for follow-up. Risk of alcohol addiction was assessed using CAGE questionnaire. Addiction was recognized when total score was 2 of 4. Information on new CVD cases was obtained from the second screening and three postal questionnaires, confirmed by clinical diagnosis. Information on deaths and causes was obtained from local registry, Central Statistical Office and by interviewing participants' families. Independent effect of the severity of alcohol problems on CVD risk was assessed using Cox proportional hazard models.

Fig. Kaplan-Meier survivor estimates by CAGE score

Table 2. Distribution of covariates by CAGE score

N
$\begin{array}{lllllll}\text { Men, } \mathrm{n}(\%) & 394(52.77) & 50(19.01) & 18(10.91) & 22(12.79) & 6(7.50) & <0.001\end{array}$
Age [years], x(SD)
Education, n (\%)

$$
\begin{array}{rcccc}
\text { Voctional } 1937(30.13) & 78(29.66) & 56(33.94) & 58(33.72) & 31(38.75) \\
\text { high } 2493(38.78) & 76(28.90) & 50(30.30) & 68(39.53) & 33(41.25)<0.001 \\
\text { university } 1999(31.09) & 109(41.44) & 59(35.76) & 46(26.74) & 16(20.00)
\end{array}
$$

Marital ststus, $\mathrm{n}(\%)$
married/cohabiting 4999 (77.85) 222 (85.06) 128 (77.58) 139 (80.81) 65 (81.25) single/widowed $1422(22.15) 39(14.94) \quad 37(22.42) \quad 33(19.19) \quad 15(18.75) 0.066$ Occupational status, n (\%)
working 3270 (50.90) 102 (38.78) 73 (44.24) 66 (38.73) 39 (48.75)
not working 3154 (49.10) 161 (61.22) 92 (55.76) 106 (61.63) 41 (51.25)
Perceived control score, $x(S D) \quad 37.2(7.33) \quad 35.7(7.91) 35.7(7.97) 34.2(8.00) 32.5$ (8.56) 0.027

Hypertension, $\mathrm{n}(\%)$
Hypercholesterolemia, $\mathrm{n}(\%)$
Diabetes, $\mathrm{n}(\%)$
BMI kg/m2], x(SD)
Ever smoker, n(\%)

3601 (60.44) $138(58.23) 101(70.63) 99(64.71) 47(67.14) 0.063$ 4990 (85.93) 194 (83.98) 126 (87.50) 134 (90.54) 60 (86.96) 0.454 $764(13.19) \quad 36(15.65) \quad 18(12.50) \quad 24(15.69) \quad 12(17.14) \quad 0.58$ $28.04 .49) \quad 27.8(4.24) 27.5(4.62) 27.1(4.20) 26.4$ (3.68) 0.113 3848 (59.97) 215 (81.75) 134 (81.21) 146 (85.88) 73 (91.25) <0.001

Table 3. Association between CAGE score and risk of CVD event

		HRa ${ }^{\text {(95\%CI) }}$	HR ${ }^{\text {b }}$ (95\%CI)	HR ${ }^{\text {(}}$ 95\%CI)	HR ${ }^{\text {d }}$ (95\%CI)
0	0	1.00	1.00	1.00	1.00
\bigcirc	1	1.25 (0.82-1.92)	1.01 (0.67-1.56)	0.89 (0.53-1.47)	0.87 (0.52-1.44)
	2	1.49 (0.92-2.41)	1.15 (0.71-1.87)	0.98 (0.56-1.72)	0.94 (0.54-1.64)
\%	3	2.80 (1.91-4.10)	2.17 (1.47-3.20)	2.07 (1.36-3.17)	1.92 (1.24-2.95)
\checkmark	4	3.36 (2.00-5.62)	2.49 (1.48-4.18)	2.49 (1.44-4.28)	2.28 (1.32-3.94)

b-adjusted for age, sex, education, marital status, ocupational status
c-adjusted for age, sex, education, marital status, ocupational status, hypertension, hypercholesterolemia, smoking, diabetes, BMI
d - adjusted for age, sex, education, marital status, ocupational status, hypertension, hypercholesterolemia, smoking, diabetes, BMI and perceived control

Conclusion: Strong alcohol addiction was predictor of incident CVD, independent of main CVD risk factors.

Results: The analysis included 7,112 persons having data on CAGE and free of CVD at baseline. No alcohol problems (0 points) were found in 90\% of participants. Almost 4% had 1 point. 2.5% of participants scored 2 and 3 points. 80 persons (1\%) answered positively for 4 questions. Median follow-up time was 9.07 years (IQR=0.9). Total of 63,866 person-years were analyzed. During the follow-up 583 incident CVD cases occurred. After adjustment for age, compared to persons with no alcohol problems participants with 3 or 4 points had higher risk of CVD by about 3 times ($\mathrm{HR}=2.80 \quad 95 \% \mathrm{Cl}=1.91-4.10 \quad$ and HR=3.36
$95 \% \mathrm{Cl}=2.00-5.62$, respectively). Further adjustment for sex, education, marital status and occupational status reduced the estimates to: $\mathrm{HR}=2.17 \quad 95 \% \mathrm{Cl}=1.47-$ 3.20 and $\mathrm{HR}=2.49$ 95\% $\mathrm{Cl}=1.48-4.18$, respectively. Additional adjustment for hypertension, hypercholesterolemia, smoking, BMI, diabetes did not influence the estimates. Further adjustment for perceived control reduced the HRs by about 10\%, leaving persons with 3 or 4 point on CAGE scale at twice higher risk of CVD incident compared to persons with no alcohol problems (HR=1.92 $95 \% \mathrm{Cl}=1.24-2.95$ and $\mathrm{HR}=2.28$ $95 \% \mathrm{Cl}=1.32-3.94, \quad$ respectively). Association between alcohol problems assessed as 1 or 2 points on CAGE scale and CVD incidence was much weaker and explained by the covariates.

